
PHYSICAL REVIEW E SEPTEMBER 2000VOLUME 62, NUMBER 3
Generalization of Noséand Nosé-Hoover isothermal dynamics

A. C. Brańka and K. W. Wojciechowski
Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179 Poznan´, Poland

~Received 1 March 2000; revised manuscript received 28 April 2000!

The infinitely many possible isothermal dynamics based on Nose´ and Nose´-Hoover methods are investi-
gated. Their properties and criteria for selecting different isothermal dynamics determined by various scaling
functions of the thermostats variable involved in the generalized Nose´ Hamiltonian @J. Jellinek and R. S.
Berry, Phys. Rev. A38, 3069~1988!# are tested with molecular dynamics simulations, and examined analyti-
cally. It is shown that time scaling is related to the scaling of the momenta. It is demonstrated that, for practical
realizations, the entire generalization of the Nose´-Hoover method reduces to only two momentum scaling
functionsh andu, with a functionv defining the ‘‘potential energy’’ of the thermostat. The most general form
of the generalized Nose´-Hoover ~GNH! equations of motion is established. It enables correct calculations of
both static and dynamic equilibrium quantities. GNH equations withh5sa, u5sq, andv; lns are studied in
detail. With such a choice of the functions the extended Nose´-Hoover~ENH! equations are expected to produce
more chaotic phase-space dynamics than the NH equations. This is illustrated by thermalization of a one
dimensional harmonic oscillator. For a system away from equilibrium the ENH thermostat is not able to
provide dynamics consistent with the target temperature, and, thus, the GNH approach reduces to the original
Nosé-Hoover thermostat. A simple modification of the ENH equations is proposed which makes the ENH
thermostat also applicable to nonequilibrium states.

PACS number~s!: 05.10.2a, 05.20.Jj, 02.70.Ns, 05.70.Ln
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I. INTRODUCTION

During the last 25 years molecular dynamics~MD! simu-
lations at other than ordinary isoenegetic conditions h
become possible@1–4#. Many methods for performing cal
culations at different thermodynamic conditions~such as
constant temperature or constant pressure! have been devel
oped, extending molecular dynamics simulations to vari
ensembles~for a review, see, for instance, Refs.@5,6#!.
Among these methods calculations at constant tempera
are particularly useful, and so have attracted consider
attention. Continuous interest in this subject is driven by
plications in the area of nonequilibrium simulations. In the
heat production in the system requires a thermostat
mechanism to achieve steady-state conditions@7,8#.

Among the many approaches to achieving constant t
perature conditions, one of the most important was inven
by Nosé @9,10#. It is based on extending the space of t
coordinates and momenta of the real particles by adding
extra ‘‘virtual’’ variable along with its conjugate momentum
A specific Hamiltonian is proposed in which the extra d
grees of freedom act as a heat bath for the real partic
which guarantees that the equations of motion of the res
ing ‘‘extended’’ system generate time averages that
equivalent to the canonical ensemble averages.

Hoover @11# reformulated and simplified the extende
system method, making it more useful for implementation
MD calculations. In both approaches a major advance
achieved by showing that the canonical distribution of p
ticle positions and momenta can be generated with smo
deterministic, and time-reversible trajectories. At present
Nosé-Hoover approach is a primary tool for performing co
stant temperature calculations both at and away from e
librium.

Many modifications and generalizations based on
Nosé’s Hamiltonian and Hoover’s scheme were proposed
PRE 621063-651X/2000/62~3!/3281~12!/$15.00
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the literature@12–17#. The many alternative constant tem
perature dynamics techniques proposed create the impre
that we have at hand a large number of powerful tools
investigate dynamical models, and that with these tools
have considerably extended our capability to simulate
only static but also transport and time-dependent proper
of different dynamical systems.

Among the various proposals, an approach by Jellin
and Berry@12# appears to be the most comprehensive. J
inek and Berry proposed a generalization of the Nose´ Hamil-
tonian involving multiplicative scaling of coordinates, mo
menta, and time. They concluded that there exist infinit
many different Hamiltonians ~nonequivalent dynamics!
which possessall the properties of Nose´’s Hamiltonian dy-
namics. These proposed generalized dynamics have not
exploited in practical applications, and the criteria for sele
ing for a given type of dynamics have not been establish
The present work attempts to fill this gap.

In this work we have searched for the possible advanta
and disadvantages of such generalized dynamics. We s
that the number of generalized Hamiltonians which poss
the properties of the Nose´ Hamiltonian is in fact quite small.
Thus our freedom to select a method for generating isoth
mal dynamics is also quite limited.

In Sec. II the Nose´ and Nose´-Hoover approaches ar
briefly introduced. Their generalizations are presented
Sec. III. Implications of the position and momentum scali
are investigated in Secs. IV and V, respectively. Addition
scaling of the virtual momenta is considered in Sec.
Equilibrium and nonequilibrium properties of the gener
ized Nose´-Hoover scheme are studied and discussed in S
VII and VIII. Conclusions are drawn in Sec. IX.

II. NOSÉ AND NOSÉ-HOOVER DYNAMICS

In the Nose´ approach@9,10# a physical system ofN par-
ticles with momentap85(p18 ,p28 , . . . ,pN8 ) and coordinates
3281 ©2000 The American Physical Society
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q85(q18 ,q28 , . . . ,qN8 ) in a fixed volumeV8, and potential
energyU (q8!, is considered. An additional degree of fre
dom s8 is introduced and two phase spaces, or systems
defined: the extended virtual system~primed variables! G8
[(q8,p8,s8,Ps8), and the extended physical syste
~unprimed variables! G[(q,p,s,Ps), wherePs8 is the conju-
gate momentum ofs8. ~Note that previously the virtual sys
tem has most commonly been characterized by unprim
variables.! The physical system (q,p) is a subsystem of the
extended physical system. The relationship between the
phase spaces~unprimed and primed variables! is defined as

q5q8, p5p8/s8, s5s8, Ps5Ps8/s8, dt5dt8/s8,
~1!

and the following Hamiltonian is postulated for the extend
virtual system:

HN8 5(
i 51

N pi8
2

2ms82 1U~q8!1
Ps8

2

2Q
1gkTlns8. ~2!

The parameterg is essentially equal to the number of degre
of freedom of the physical system,m is the mass of the
particle,Q is a parameter which acts as an effective ‘‘mas
for the motion ofs, k is Boltzmann’s constant, andT is the
temperature. In the extended virtual system the total ene
is conserved and we have a situation resembling traditio
(E,V,N) microcanonical MD simulations. If we assume th
quasiergodic hypothesis, then time averages along the tra
tory determined by the equations of motion are equal to
semble averages in the microcanonical ensemble, with
partition function

Zm5
1

N! E dPs8E ds8E dp8E dq8 d~HN8 2E!. ~3!

The essence of Nose´’s approach is a simple relation betwee
the microcanonical partition function of the extended virtu
system and the canonical partition function of the physi
system,Zc ,

Zm5
C

N! E dpE dq exp@2H~p,q!/kT#[CZc , ~4!

whereH5(pi
2/2m1U(q) is a Hamiltonian for the physica

system, andC(T,Q,E,N) is a constant. This relation force
the time averages of any quantity which is a function
p8/s8 andq8 along the trajectory determined by the equatio
of motion to be exactly those of the canonical ensemble

lim
t8→`

1

t8
E

0

t8
A~p8/s8,q8!dt85^A~p8/s8,q8!&m5^A~p,q!&c .

~5!

^•••&m and ^•••&c denote the microcanonical ensemble a
erage in the extended virtual system and the canonical
semble average in the physical system, respectively.
Hamiltonian dynamics in the extended virtual space gen
ates fluctuations of the kinetic and potential energies in
physical system, in accordance with canonical distributio
of the (p,q) -variables at the fixed temperatureT.
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In practical realizations, Nose´’s scheme in the phas
space of virtual variables is so cumbersome~mainly due to a
nonphysical time scaling involved in it! that calculations of
time-correlation functions with this scheme are hardly fe
sible. This difficulty is avoided by transforming Hamiltonia
equations of motion inG8 space into non-Hamiltonian equa
tions of motion inG space, employing the scaling relatio
@Eq. ~1!# between both spaces@10,11#. The resulting equa-
tions of motion in the extended physical space allow one
propagate directly the physical coordinates and mome
Hoover pointed out that for the thermostatting mechani
only the product ofs and Ps is significant. Definingz
5sPs /Q, he transformed the equations of motion into
closed set of equations in the (p,q,z) space,

dqi

dt
5

pi

m
, ~6!

dpi

dt
52

]U

]qi
2zpi , ~7!

dz

dt
5

1

QS (
i

pi
2

m
2gkTD , ~8!

with the subsidiary equation fors,

ds

dt
5sz, ~9!

which is not needed to compute the trajectories of theN
interacting particles. A conserved quantity for this system

Y5(
i

pi
2

2m
1U~q!1

1

2
Qz21gkTlns, ~10!

which is not a Hamiltonian. The set of the equations of m
tion ~6!–~9! defines ‘‘Nose´-Hoover’’ ~NH! dynamics. As
was shown by Hoover@11#, these equations generate the s
tionary phase-space density

Fc}expS 2
1

kT S (
i

pi
2

2m
1U~q!1

1

2
Qz2D D , ~11!

which satisfies the continuity equation for the probabil
density functionF. Conservation of canonical distributio
~11! is a necessary, but not sufficient, condition for establi
ing the equivalence of time averages generated by the n
Hamiltonian dynamics to corresponding canonical ensem
averages@8#. In the NH approach such an equivalence can
established via the extended phase space of virtual varia
in three separate conceptual steps@12,18,19#. The first step
establishes anensemble-ensemblerelation @i.e., the second
equality in relation~5!#, by exploiting relation~4! between
canonical and microcanonical partition functions. The s
ond step establishes anensemble-dynamicsrelation in the
phase space of the virtual variables based on the
Neumann–Birkhoff theorem@20# which justifies the use of
the ensemble average instead of the time average. In the
step thedynamics-dynamicsrelation between the primed an
unprimed dynamics~or equations of motion! is achieved us-
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PRE 62 3283GENERALIZATION OF NOSÉAND NOSÉ-HOOVER . . .
ing the scaling relation~1! and demonstrates that the tim
propagators of the two dynamics are equivalent@21,18#.

It is worth noting that transformation~1!, consisting of the
virtual momentum and nonphysical time scaling, can be p
formed not in one but in two stages. If in the first stage o
time scaling is performed, the resulting equations beco
real or physical time equations of motion of the virtual va
ables (q8,p8,Ps8 ,s8). Then it can be readily demonstrate
that such equations of motion can be directly derived from
particular Hamiltonian which is the constrained Nose´ Hamil-
tonian,HN8 50, multiplied by thes8 variable. This particular
Hamiltonian,HD8 5s8HN8 , was discovered by Dettmann@8#
~see also@22#!, and avoids the time transformation involve
in a derivation of the NH equations from Nose´’s Hamil-
tonian. The Hamiltonian of Dettmann can be considered
an intermediate step in the dynamics-dynamics relation
tween the Nose´ and NH dynamics, or as an alternative a
simpler means of deriving NH dynamics. The Nose´-Hoover
scheme solved the problem of performing MD simulations
constant temperature, and has become a standard simu
method.

III. GENERALIZATIONS OF NOSE ´ ’S ISOTHERMAL
DYNAMICS

Jellinek and Berry@12# demonstrated that Nose´’s dynam-
ics is not unique. In fact, there exist many other differe
dynamics which are defined by thegeneralizedNoséHamil-
tonian,

HGN8 5(
i

pi8
2

2mhi
2~s8!

1U„f ~s8!q8…1
Ps8

2

2u~s8!Q
1kTv~s8!,

~12!

wherehi(s8), f i(s8), u(s8), andv(s8) are real nonvanishing
differentiable functions ofs8. For h(s8)5s8, f (s8)51,
u(s8)51, andv(s8)5glns8, the original Nose´ Hamiltonian
is recovered. The generalized Hamiltonian equations of m
tion are

dqi8

dt8
5

pi8

mhi
2 , ~13!

dpi8

dt8
52

]U

]qi8
, ~14!

ds8

dt8
5

Ps8

u2Q
, ~15!

dPs8

dt8
5(

i

pi8
2

mh3

dhi

ds8
2

]U

]s8
1

Ps8
2

u3Q

du

ds8
2kT

dv
ds8

. ~16!

The generalized Hamiltonian makes it possible to search
equations of motions able to mimic, both adequately a
more efficiently, not only the equilibrium but also the tim
dependent properties of a given physical system. To
knowledge this possibility has not been explored in the
erature in any systematic way. We are aware of only a
applications of particular generalized isothermal dynam
Winkler @15#, for example, argued that the casesh(s8)
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5s82, f (s8)51, u(s8)51, and v(s8)5glns8 give better
mixing of phase-space trajectories in systems with a few
grees of freedom.

The relation between virtual and physical spaces~or be-
tween unprimed and primed variables! is defined as

qi5qi8 f i , pi5pi8/hi , s5s8, Ps5Ps8/u, dt5dt8/w,
~17!

wherew is a real nonvanishing differentiable function ofs8.
The above scaling relations lead to the following equatio
of motion in the extended physical space, which we c
generalized Nose´-Hoover ~GNH! dynamics:

dqi

dt
5

f iw

hi

pi

m
1

1

f i

d f i

ds

w

uQ
Psqi , ~18!

dpi

dt
52

f iw

hi

]U

]qi
2

1

hi

dhi

ds

w

uQ
Pspi , ~19!

ds

dt
5

w

uQ
Ps , ~20!

dPs

dt
5

w

u S (
i

pi
2

m

1

hi

dhi

ds
2(

i
qi

]U

]qi

1

f i

d f i

ds
2kT

dv
dsD .

~21!

The equivalence between the above GNH dynamics and
nonical ensemble averages of physical quantities can be
tablished in the same way as for the NH dynamics—by us
the ensemble-ensemble, ensemble-dynamics, and dynam
dynamics relations@12,18#. In accordance with these thre
steps the GNH equations of motion~18!–~21! generate the
canonical distribution for the physical phase-space variab
or time averages calculated along trajectories generated
the GNH equations are equivalent to the canonical ensem
averages.

It is worth mentioning that, parallel to NH dynamics, a
‘‘intermediate’’ Hamiltonian can be found which avoids th
unphysical time scaling in deriving the GNH dynamics fro
the generalized Nose´ Hamiltonian. This Hamiltonian has th
form HGD8 5wHGN8 , and requires the additional conditio
HGN8 50. The implications of the various scaling function
involved in the GNH dynamics are the subject of the ne
sections.

IV. SCALING OF PARTICLE POSITIONS

Let us first assume that for each particlei, f i5 f and hi
5h. Furthermore, in order to concentrate on theq-scaling
problem and to make our considerations more specific, le
further assumeh5s2 and f 5s and, similarly to the NH dy-
namics,u[1, w5s, andv5glns. For such a form of the
scaling functions the GNH equations read,

dqi

dt
5

pi

m
1zqi , ~22!

dpi

dt
52

]U

]qi
22zpi , ~23!
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dz

dt
5

1

QS 2(
i

pi
2

m
2(

i
qi

]U

]qi
2gkTD , ~24!

ds

dt
5sz, ~25!

where Ps /Q has been replaced byz. The equation for the
variable s is, just as in the case of the NH dynamics, t
subsidiary equation. The conserved quantity here has exa
the same form as that in Eq.~10!. ~Note that a similar situ-
ation can be achieved withany h5s f, and f 5sl , wherel is
a real number.! It is also easy to check that the canonic
phase-space density given in Eq.~11! is a stationary solution
of the continuity equation for the probability density in th
phase space of the above GNH equations. Thus the nece
condition to simulate canonical ensemble averages is
filled.

In order to study properties of the GNH equations,
first consider a system of particles in an external poten
w(x,y,z)5b(xk1yk1zk)/k which localizes the particles in
the space.@In such a system there are no complications fr
the periodic boundaries due to the position dependent fo
present in Eqs.~22! and~23!#. This external potential mimics
a cubic container confining the system of interacting p
ticles. The effective volume of this container is controlled
the parameters,k and b. In our calculations,k512. Three
different values ofb were used. The system used in the sim
lations consists ofN5108 WCA particles interacting with a
pairwise Lennard-Jones potentialc(r )54«@(s/r )12

2(s/r )6#, truncated and shifted at its minimumr /s521/6.
The temperatureT050.722 was used as the target tempe
ture.

In all our work conventional reduced units are used:
length in s, the energy in«, and the temperature in«/kB ;
the time unit issAm/«. TheQ parameter is in the Lennard
Jones units«. The equations of motion were solved using t
classic fourth-order Runge-Kutta method, with a time step
Dt50.001.

First, the NH dynamics has been used to equilibrate
system at given conditions, (k,b,Q,T0 ,N). Next, starting
from the well equilibrated state, long runs have been p
formed with the NH and GNH dynamics. In the case of t
NH dynamics usually less then 23104 time steps were suf
ficient to achieve the target temperature. In contrast, e
after hundreds of thousands of time steps~more than an orde
of magnitude longer than usually is needed in MD simu
tions! the average kinetic temperature produced by the G
dynamics was still different fromT0. This rather disappoint-
ing result is shown in Fig. 1. In the figure deviations of t
average kinetic temperature fromT0 are shown for three dif-
ferent effective densities which are determined by the ex
nal potential withb51024, 1025, and 1026. The data ob-
tained for differentQ’s are also demonstrated. The results
Fig. 1 clearly indicate that, in contrast to the correct aver
temperature produced by the NH dynamics, the GNH
namics produces an average ‘‘temperature’’ which chan
continuously in time with characteristic oscillations depen
ing upon the system and dynamics parameters.
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Some explanation of this problem can be deduced dire
from the form of the GNH equations of motion. As one c
note, Eq.~24! has the form

Q
dz

dt
52~K2K0!13VP, ~26!

FIG. 1. ~A! Deviations of the average kinetic temperature fro
the target temperatureT050.722 as a function of accumulate
simulation time,t, in the system ofN5108 WCA particles in ex-
ternal potential~see the description in the text!. The four curves
~a!–~d! were obtained at different system and dynamics conditi
(b,Q) under the GNH dynamics in which the particle position sc
ing was exploited@Eqs.~22!–~25!#. The corresponding four curve
obtained under the NH dynamics are indistinguishable, and on
scale of the graph are seen as a zero deviation on a straight line~B!
Example of a realization of the condition 2(^K&2K0)523V^P&
@see Eq.~26!#. The horizontal line is the sum of the curves. Data a
from a continuation of the simulation which produced curve~c! in
~A!.
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whereK denotes instantaneous kinetic energy,K0 represents
the average kinetic energy~corresponding to the given tem
perature,T0), andV is a volume. As we consider a system
an external potential,P represents here instantaneous diff
ence between the external pressure~due to the external force!
and the internal pressure~due to the interparticle forces!, and
in accordance with the virial theorem its average has to
zero ~irrespective of the form of interparticle interaction!
@6#. Equation~26! indicates that the dynamics@Eqs. ~22!–
~25!# does not guarantee that the separate relations^P&50
and ^K&5K0 can be achieved. Instead, it indicates that
more general condition 2(^K&2K0)523V^P& will be real-
ized. With this condition, however, the GNH dynamics c
produce different dynamical states which do not necessa
give correct averages of the physical quantities. This pr
lem is illustrated in Figs. 1~B! and 2. Figure 1~B! shows
results of a very long run, which was a continuation of t
simulation producing the curve~c! in Fig. 1~A!. The two
curves in the figure, representingV^P&/N and deviations of
the average kinetic temperature, clearly demonstrate tha
desired physical conditionŝP&50 and^K&5K0 can never
be achieved in the system. Figure 2 shows the differe
between the autocorrelation functions~ACF’s! obtained with
the GNH and NH dynamics. For short-time periods, cons
ered in the figure, the mean square displacement and
velocity ACF’s calculated with the NH method are, as e
pected, smooth and monotonic functions of time. As the
curacy of the ACF’s at short-time periods is very high, t
same results should be obtained from the GNH sche
However, as is clearly visible in Fig. 2, the results are s
nificantly different. The apparent artificial oscillations pr
duced by the GNH dynamics indicate unequivocally that t

FIG. 2. Mean square displacement in the system of WCA p
ticles in the external potential (N5108,T050.722,Q51, b
51026) calculated with the NH and GNH dynamics~22!–~25!. The
inset shows a difference (D r) between the mean square displac
ments obtained with these dynamics~solid line!. Dashed line shows
the corresponding difference (Dv) between the velocity autocorre
lation functions.
-

e

e

ly
-

he

e
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he
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-
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dynamics is not able to reproduce correctly the syste
physical quantities such as the one-particle ACF.

On the basis of the above results we can conclude tha
GNH dynamics in the form given by Eqs.~22!–~25! cannot
guarantee that the target temperature will be achieved
system of interacting particles in the external field. Furth
more, some unphysical~oscillatory! behavior of calculated
quantities can occur. Let us note that the above consi
ations and conclusions also remain valid for the whole cl
of GNH dynamics defined by theh5s f, w5s, and f 5sl

functions.
Next we considered an infinite periodic system used in

computer simulations. First we applied the NH equations t
system of 108 WCA particles in periodic boundary con
tions in the solid state~an initial configuration was the face
centered-cubic lattice, andV was a cube!. Simulations were
performed at several different state (T0 ,V) conditions. Usu-
ally fewer than 53104 time steps were sufficient to establis
the desired temperature, and obtain correct values of phys
quantities such as the energy or pressure.

Application of Eqs.~22!–~25! to the well equilibrated
WCA solid, at any of the considered state conditions,
quickly to a significant changes in the monitored instan
neous physical quantities, and the desired value of the a
age kinetic temperature~as well as other physical quantities!
was not achieved, even after long-time simulations. The
culations were repeated for a system of 256 Lennard-Jo
~LJ! particles. The results were similar to that for the WC
system. In Fig. 3 the evolution of the instantaneous temp
ture, generated by the NH and GNH equations, in the
system is shown at two thermodynamic states (T050.43,
N/V51.00) and (T050.63, N/V51.00). After the reduced
time periods of 40, the temperatureT0 was switched from
0.43 to 0.63, or vice versa. An initial state point was from
well equlibrated, with the NH dynamics, fcc solid atT0
50.43 @Figs. 3~a! and 3~b!#, and atT050.63 @Fig. 3~c!#. It
has been checked forQP(0.05,50) that the results shown i
Fig. 3 are fairly insensitive to a particular value of theQ
parameter. It is obvious from the figure that the GNH d
namics produces incorrect and history-dependent results,
^T&ÞT0. The pressure and the total potential energy disp
similar an unphysical behavior, and are strongly correla
with the temperature.

However, the GNH dynamics seems to be establishe
conceptually consistent steps incorporating the ensem
ensemble, ensemble-dynamics, and dynamics-dynamics
tions. So, what is incorrect? To find the reason for the fail
of the GNH approach, let us note that the volumeV8 in the
virtual space cannot~as usually! be fixed because, otherwise
one would obtain the incorrectly established ensemb
ensemble relation. The ensemble-ensemble relation is b
on the simple proportionality relation between the microc
nonical partition function of the extended virtual system a
the canonical partition function of the physical system@Eq.
~4!#. To derive this relation one has to change the variab
~from primed to unprimed! in accordance with the scalin
relations~1! or ~12!, and integrate over the variables @12#.
However, for a fixed volume in virtual space the scaling
virtual particle positions causes the integration limits of t
physical positions to becomes dependent, and consequent
the integration over the variables, which is necessary to

r-

-
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obtain the canonical distribution, cannot be performed p
to the integration over the positions~as far as the scaling
functions f i are not constants!.

Hence the only possiblity is to assume that the volume
the virtual system scales with thef function, V85V/ f D(s),
whereD is the dimensionality of the system@18#. ~In gen-
eral, if f i were different, a ‘‘volume’’ accessible to eac
virtual particle would be different and would vary accordin
to changes of thef i function.! In this case, after performing

FIG. 3. Evolution of the instantaneous temperatureT in the
Lennard-Jones system (N5256,N/V51.00,Q51) obtained from
the NH dynamics~a!, and from the GNH dynamics~b! and ~c!, at
two temperaturesT050.43 and 0.63~indicated as the dashed lines!.
An initial state point was from a well equilibrated~with the NH
dynamics! fcc solid. At a reduced timet540 the temperatureT0

was changed to 0.63@to 0.43 in~c!#, and att580 it was switched
back to 0.43@to 0.63 in~c!#.
r

f

the position transformationq5q8 f (s), the integration limits
of the physical~unprimed! positions become fixed and thes
integration can be formally performed, establishing the
sired ensemble-ensemble relation. However, the prob
with this interpretation is that, except in the trivial ca
where f (s) is constant, contrary to the case of any microc
nonical ensemble considered in the framework of statist
mechanics, the volume of the system in the virtual spac
not fixed but varies as a reaction to thes-variable ‘‘motion.’’
Thus the volume of the virtual system is no longer a fix
parameter but becomes avariable which has a close paralle
to the situation in isothermal-isobaric dynamics@9#. In the
isothermal-isobaric dynamics the time dependent volu
and its conjugate momentum are explicitly present in
equations of motion for the extended virtual system. In
case considered here, the volume, which is implicitly tim
dependent through thes variable, is not included in the gen
eralized Hamiltonian or in the derived equations of motio
Consequently it is not a surprise that the dynamics based
the generalized Hamiltonian yields unphysical behavior.

It is worth adding that, from a formal point of view, con
sidering a system with a volume which scales with
s-dependent function, one also encounters a very basic p
lem of classical mechanics in which the canonical coor
nates are not all independent but are connected through e
tions of nonholonomic constraints. As there is n
straightforward approach available to deal with the nonho
nomic constraints, usually each case must be tackled i
vidually @23#. Thus, before considering the dynamic
ensemble and dynamics-dynamics relations, one should
determine the appropriate Lagrange equations for the sys
in the virtual space which takes into account the nonho
nomic constraints connected with varyings-dependent vol-
ume. Obviously, such equations, if determined, would be
general different from the GNH scheme.

On the basis of the above results and discussion, we c
clude that, not only the special case given by Eqs.~22!–~25!,
but any GNH dynamics which involves position scalin
functions, is expected to produce noncanonical averages,
cannot guarantee that the target temperature will be achie
in the system. In accordance with this conclusion, the G
equations of motion~18!–~21!, reduce to the following form:

dqi

dt
5

w

hi

pi

m
, ~27!

dpi

dt
52

w

hi

]U

]qi
2

1

hi

dhi

ds

w

uQ
Pspi , ~28!

ds

dt
5

w

uQ
Ps , ~29!

dPs

dt
5

w

u S (
i

pi
2

m

1

hi

dhi

ds
2kT

dv
dsD , ~30!

where we set all the irrelevant constantsf i[1.
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V. TIME SCALING

The time scaling, explicitly represented in the GNH equ
tions through the scaling functionw, has been considered a
a totally independent procedure, not related to the varia
transformations between physical and virtual syste
@18,15#. Nosé@5# pointed out that this is true only for stati
quantities. For dynamic quantities he postulated that
force derived from the potential should be identical with th
in Newton’s equation, and consequently the following re
tions are required:w fi /hi51. In this section we show tha
this requirement is a sufficient condition but not a necess
one, and demonstrate, based on statistical mechanical a
ments, why the time scaling is not an independent trans
mation.

Let us first briefly discuss the static quantities. To find a
exploit any potential advantages of the time scaling ex
flexibility of the GNH equations of motion, we performe
MD simulations of the WCA fluid with periodic boundar
conditions at the state pointsT050.722, and%50.8442
~which corresponds, roughly to the triple point of th
Lennard-Jones liquid!. The chosen system is an inheren
mixing system and is often used as a reference state for
ing MD procedures.

In the simulations presented in this section the followi
form of the scaling functions was chosen :w(s)5sl , u(s)
51, hi(s)5s, and v(s)5glns, where l is a real number,
g5n112 l , andn is a number of the degrees of freedom
the physical system. With these scaling functions the G
equations of motions are equivalent to those discussed
Jellinek ~see Eqs.~40! in Ref. @18#! and read

dqi

dt
5

sl

s

pi

m
, ~31!

dpi

dt
52

sl

s S ]U

]qi
2

1

Q
Pspi D , ~32!

ds

dt
5

1

Q
sl Ps , ~33!

dPs

dt
5

sl

s S (
i

pi
2

m
2kTgD . ~34!

The WCA fluid used in the simulations consisted ofN
5108 particles, and the simulations were carried out for h
a million time steps. In the calculationsQ50.5 was used as
an optimalQ-parameter value~this value was established i
preliminary simulations with the NH thermostat!.

Calculations performed with differentl gave correct aver-
age kinetic temperature equal to the target temperatureT0.
As one can see in Table I, other static quantities, like
total energy and pressure, also depend very little on the
ticular value of l. Thus, in accordance with the theoretic
predictions, the GNH equations of motion with different tim
scaling functions produce the same averages of static q
tities. However, the various alternative dynamical pro
dures, defined by differentl, differ considerably in the con
vergence rates of calculated quantities. The convergenc
static quantities to their correct final values becomes incre
ingly sluggish asl deviates from unity. In all the studie
-

le
s

e
t
-

ry
gu-
r-

d
a

st-

H
by

lf

e
r-

n-
-

of
s-

cases the fastest convergence was achieved with the NH
namics (l 51). Thus the extra flexibility coming from the
time scaling does not seem to lead to any practical adv
tages.

Let us now consider results for dynamic quantities. Figu
4~a! clearly shows that the velocity autocorrelation functi
Cv(t)5^p(t)p(0)&/3, depends strongly on the particula
form of the time scaling function. Also the mean square d
placement@Fig. 4~b!# depends significantly onl. In the last
two columns in Table I, the self-diffusion coefficients calc
lated from the Green-Kubo relation,

Dv5E
0

`

Cv~ t !dt, ~35!

and from the mean square displacement, att→`,

Dr5
1

6t
^„q~ t !2q~0!…2&, ~36!

are shown. Within the statistical uncertainties, both of
autocorrelation functions must produce the same diffus
coefficientDv5Dr . As one can see comparing the first ro
with the last two rows in Table I, the consistent results c
be obtained not only forl 51 but also with the dynamics
defined bylÞ1.

An explanation of this problem can be obtained by fo
lowing the method by Evans and Holian@20# to show the
thermodynamic equivalence of the NH and Newtonian eq
librium time correlation functions. Using their approach,
C(tN), C(tGNH) denote equilibrium time correlation func
tions of the extensive phase variablesA and B with zero
mean computed under Newtonian and GNH dynamics,
spectively. The difference between them,DC, can be esti-
mated considering the difference,DL, between the Newton-
ian and GNH Liouvilleans@20#

DL5S sl

s
21D(

i
pi

]

]qi
1S sl

s
21D(

i
Fi

]

]pi

2z
sl

s (
i

pi

]

]pi
1 ż

]

]z
1 ṡ

]

]s
, ~37!

TABLE I. The properties of the WCA fluid calculated under th
GNH dynamics with different time scaling functionsw5sl @Eqs.
~31!–~34!# (N5108,T050.722,%50.8442, andQ50.5). The col-
umns from left to right: the time scaling function, average kine
temperature, total potential energy per particle, pressure, diffu
coefficient from Eq.~35!, and diffusion coefficient from Eq.~36!.
The last two rows represent the data obtained under the spec
prepared GNH dynamics in whicĥsl 21& was close to unity.

l ^T& ^U& ^P& Dv Dr

1 0.7220 0.716~3! 6.328~5! 0.039 0.039
2 0.7220~1! 0.717~3! 6.330~6! 0.046 0.035
4 0.7220~2! 0.716~5! 6.325~7! 0.061 0.027
6 0.722~1! 0.714~8! 6.32~1! 0.083 0.021
6 0.7220~5! 0.716~6! 6.327~6! 0.039 0.040
2 0.7220~1! 0.717~3! 6.330~6! 0.039 0.039
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whereFi52]U/]qi , andz5Ps /Q. The last two terms can
be ignored in further considerations, since phase variable
interest will not usually have any explicit dependence upoz
ands. The first three terms give

DC~ t !5E
0

t

dt K A~t2t !S sl

s
21DB8~t!L

1E
0

t

dt K A~t2t !S sl

s
21DB9~t!L

2E
0

t

dt K A~t2t !z
sl

s
B-~t!L , ~38!

whereB8, B9, andB- are new extensive variables resultin
from transformation of the variableB under the operators
( ipi]/]qi , ( iFi]/]pi , and ( ipi]/]pi , respectively. As
^zsl 21&50 andzsl 21 is intensive, the last integral is of or
der 1/N of C(tN) @20#. Also sl /s21 is an intensive variable

FIG. 4. Velocity autocorrelation functions~a!, and mean square
displacements~b!, of the WCA fluid obtained under the GNH dy
namics @Eqs. ~31!–~34!#, with different time scaling functionsw
5sl ( l 51 corresponds to the NH dynamics; forl .1, the average
of sl 21 was greater than 1.2!. Dashed curves represent the da
obtained under the specially prepared GNH dynamicas, labele
l c, in which the resulting time average ofsl 21 was very close to
unity (^sl 21&'1.03, l 56).
of

but the first two integrals will be of order 1/N of C(tN) only
if the condition^sl 21&51 is obeyed. This is just the cond
tion which must be satisfied if dynamic quantities are to
correctly determined~see the data in the last two rows
Table I!. Obviously this condition is exactly obeyed ifl 51.
For lÞ1, incorporating the constraint̂sl 21&51 into the
equations of motion is rather a hopeless task. Thus, us
any GNH dynamics withlÞ1 would in practice usually re-
quire, at any state point, a long additional preliminary n
merical search for the appropriate condition~i.e., an initial
point in $q,p,s,z%), which gives^sl 21&>1. ~For larger sys-
tems of at least a few hundred particles, the constraint ca
well approximated by the more manageable condition^s&
51). Furthermore, in any practical realization the conditi
can be obeyed only with some finite accuracy, which me
that calculated dynamical quantities will inevitably be on
approximate, and therefore unreliable to some extent~see the
data represented by the dashed line in Fig. 4!. In this sense
any practical realization withlÞ1 is incorrect.

The above reasoning can be extended to any time
momentum scaling functions and, hence, we come to
important conclusion that the time scaling isnot an indepen-
dent procedure. The time scaling functionw must obey the
conditions^w/hi&51. Although these conditions are suffi
cient for calculations of the equilibrium time correlatio
functions, the difficulty in incorporating them into the equ
tions of motion means that in practiceonly the choicew
[hi can be considered, which is consistent with Nose´’s re-
quirement.

An important consequence of the latter condition is th
all hi functions have to be the same. Thus, the GNH eq
tions of motion~27!–~30! further reduce their generality to
the following form:

dqi

dt
5

pi

m
, ~39!

dpi

dt
52

]U

]qi
2

1

u

dh

ds

Ps

Q
pi , ~40!

ds

dt
5

h

u

Ps

Q
, ~41!

dPs

dt
5

h

u S 1

h

dh

ds(i

pi
2

m
2kT

dv
dsD . ~42!

The above equations, comprising three functionsh,v, andu
and a single parameterQ, are the most general form of th
GNH equations of motion that are able to generate corre
both static and dynamic properties of a system at equi
rium.

VI. SCALING OF VIRTUAL MOMENTUM

Scaling of thePs8 variable has also been considered as
additional transformation generating canonical dynamics
physical space@15,24,18#. It can be shown, however, tha
this transformation always leads to the same form of eq
tions of motion. Instead of the transformationPs5Ps8/u let
us consider the more general relationPs5Ps8/V, whereV is

by
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some real differentiable function ofs ~in general different
from u). With this relation the GNH equations are

dqi

dt
5

pi

m
, ~43!

dpi

dt
52

]U

]qi
2

1

u

dh

ds

V
u

Ps

Q
pi , ~44!

ds

dt
5

h

u

V
u

Ps

Q
, ~45!

dPs

dt
5

h

u

u

V S 1

h

dh

ds (
i

pi
2

m
2kT

dv
dsD 1S u̇

u
2

V̇
VD Ps , ~46!

where

u̇5
du

ds

hV
u2

Ps

Q
, V̇5

dV
ds

hV
u2

Ps

Q
.

With the new variablePs* 5VPs /u, the above equations be
come independent ofV and are exactly the same as the GN
equations~39!–~42!.

VII. EQUILIBRIUM PROPERTIES OF GNH DYNAMICS

Any practical realization of the GNH equations requir
specification of three functionsh,u, andv. It is worth stress-
ing that these functions are not arbitrary real differentia
functions of s. The ensemble-ensemble relation, discus
above in Sec. II, requires, e.g., that the following conditi
must be obeyed by these functions@12#:

u~v21!

v8~v21!
h3N~v21!;exp„2H~p,q!/kT…, ~47!

wherev8, andv21 denotedv/ds and the function inverse to
v, respectively~the functions are taken at a single solutions0

of the equationHGN8 2E50). The above condition consid
erably limits the number of possible forms of theh,u, andv
functions. For example, a logarithmic form of thev function
implies a power form of theh function, and, vice versa a
powerh function implies a logarithmicv function. If v is to
be a linear function ofs, then theh function has to be an
exponential, and ifh is to be an exponential thenv has to be
a linear function.

In searching for possible advantages of the GNH dyna
ics we limit our further considerations to only one set
functions obeying condition~47!. That is, we consider the
casev5glns, h5sa, and u5sq, which seems to be the
most reasonable and promising for practical applicatio
a,q are real numbers andg5(n21)a111q. For a51
andq50 the equations are the NH equations, and the c
a52, q50 was considered by Winkler@15#.

A valuable feature of this set of functions is that the
sulting GNH equations can be converted to the form

dqi

dt
5

pi

m
, ~48!
e
d

-
f

s.

se

-

dpi

dt
52

]U

]qi
2zpi , ~49!

ds

dt
5z, ~50!

dz

dt
5

1

Q S (
i

pi
2

m
2gkTD e2es1ez2, ~51!

where nowg5n2e. To derive these equations of motio
from the GNH equations~39!–~42! the following substitu-
tions have been made:s5a lns, z5aQ21Pss

a2q21, and
e5(a2q21)/a, and theQ parameter has been replaced
Q/a. In the following we will denote Eqs.~48!–~51! as ex-
tended NH~ENH! equations. The ENH equations can b
shown to have the phase-space distribution

Fc}expS 2
1

kT F(
i

pi
2

2m
1U~q!1

1

2
Qz2e22es1kTsG D ,

~52!

and the conserved quantity of this system is

Y5(
i

pi
2

2m
1U~q!1

1

2
Qz2e22es1gkTs. ~53!

The ENH scheme depends only on two parameters~i.e., Q,
and e) and is very similar to the NH approach (e50). In
particular, it possesses the frictional force term of the for
2zp common to all deterministic computationally useful a
proaches to thermomechanics@8#. @Note that the GNH equa
tions ~39!–~42! can also be converted to the form with th
friction force term2zp but at the expense of a more com
plex form for the thermostatting part of the equations.# It can
be also readily implemented in an existing MD code.

A special case,e50.5, has been considered by Winkl
et al. @23# ~note that in our notations52h and z
52ph /Q), and recommended as more nonlinear than
NH equations. The authors argued that their extension
able to produce trajectories that were sufficiently chaotic
calculate average properties of canonical ensemble, eve
a small number of degrees of freedom, such as a o
dimensional harmonic oscillator or a single particle confin
in the double-well potential.

It is natural to expect that the ENH equations can prod
even more chaotic behavior if an optimal value of the para
etere is applied. It is readily shown, for instance, that in th
case of a harmonic oscillator, the ENH thermostat produ
fairly chaotic trajectories for a range ofe and Q values for
which the position and momentum distribution functions a
close to the exact values. Also, changes in the initial con
tions have no appreciable effect on the results. Examina
of the first few moments of the position and momentum d
tribution functions showed that the best performance
been achieved for 0.1,e,0.4 and 0.001,Q,0.1, and an
example is shown in Fig. 5.

The apparent ability of the ENH equations to thermal
even such ‘‘pathological’’ systems as a one-dimensional h
monic oscillator allows us to consider the ENH thermostat
an effective and alternative method to other thermostat
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FIG. 5. ~a! Density plot of a harmonic oscillator (m51, v
51, kT51) obtained under the ENH dynamics (e50.2, Q
50.01). ~b! and ~c! show ~dots! the corresponding position an
momentum distribution functions, respectively. The data were
tained from simulations made up of 53107 fourth-order Runge-
Kutta time steps of length 0.001. The initial condition we
$q,p,s,z%5$1,1,0,1%. The solid lines in~b! and ~c! are the exact
results.
schemes@14,13,16,17# which have been proposed to de
with small or stiff systems, for which the NH and Gaussi
thermostats fail. We also stress that, among these sche
the ENH method is the only one which is Hamiltonian bas
Furthermore, if the constant of motion is to be monitor
~which is a rather common procedure in MD simulation!,
the ENH approach will require the least number of therm
statting equations~i.e., two!.

We add that in the above WCA-fluid case, at the Lenna
Jones triple point state, which is a system with good mixi
we noted only a marginal improvement over the NH dyna
ics in the convergence rate of the calculated quantities if
ENH dynamics were used with 0.1,e,0.3.

VIII. NONEQUILIBRIUM PROPERTIES OF
GNH DYNAMICS

Among the desirable properties of any thermostat the
portant property is its applicability away from equilibrium
In order to test the applicability of the GNH dynamics aw
from equilibrium, we considered a WCA fluid subject to
Couette shear strain rate field. The equations of motion w
the following thermostatting Sllod~so-named because of it
close relationship to the Dolls tensor algorithm! equations
@7#

dqi

dt
5

pi

m
1xgyi , ~54!

dpi

dt
52

]U

]qi
2xgpi ,2zpi . ~55!

In these equationspi are the peculiar momenta of particlei,
x is the unit vector in thex direction, andg is the imposed
strain rate. The thermostatting mechanism, represented bz,
was driven by the ENH thermostat@Eqs.~50! and~51!#. The
state point simulated were, as previously,T050.722 and%
50.8442. The simulated WCA fluid consisted ofN5108
particles, and calculations were performed at the redu
shear rateg51. Calculations performed with different va
ues of the parametere revealed that direct application of th
ENH thermostat witheÞ0 causes similar problems to thos
observed recently in the case of the Nose´-Hoover chain
(NHC) thermostats@25,26#. Thus, we have to conclude tha
the ENH thermostat, in the above form, is not able to g
dynamics consistent with the desired target temperature f
system out of equilibrium.

This unacceptable feature of the ENH thermostat is a
expected for other forms of the GNH equations~i.e., for
other sets ofh, v, andu functions!. Taking into account the
results of this section and previous sections, one may c
clude that the generalization of Nose´ Hamiltonian ~12!,
which provides the Hamiltonian basis for the GNH dynam
reduces in practical realizations to the original Nose´ Hamil-
tonian and the NH scheme.

We also note that in parallel to NHC thermostats, a sim
modification of the ENH thermostat@Eqs.~50! and~51!#, can
be proposed~see below!, which enables both steady-sta
averages and time correlation functions to be obtained
rectly for nonequilibrium states.

Following the reasoning and results obtained for t
modified NHC dynamics@26#, we consider the following
modified ENH thermostat:

-
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dz

dt
5

1

Q S (
i

pi
2

m
2gkTD e2es1e~z2B!2, ~56!

ds

dt
5z2B. ~57!

This differs from the original ENH thermostat only in th
appearance of a constantB. Repeating our calculations wit
this modified ENH thermostat, we verified that, as long aB
was close tôz& and 0.1,e,0.3, the SLLOD equations pro
duced results totally consistent with those computed with
Gaussian and NH thermostats@27,26#. ~Note that, in equilib-
rium, ^z&50, so that the modified ENH equations reduce
the ENH equations!. Thus the modified ENH approach ca
be considered as an extension of the NH scheme. Just
equilibrium it can offer some advantages in investigations
small or stiff nonequilibrium systems.

IX. CONCLUSIONS

In this work we have demonstrated that any freedom
choice in the selection of the isothermal dynamics sche
based on the generalized Nose´ Hamiltonian is largely illu-
sory. We show that the scaling of particle positions withf
functions is trivial. All position scaling functions have to b
a single constant if canonical averages are to be produc

If only static quantities are of interest, then time scali
can be considered as an additional procedure to define
ferent generalized Nose´-Hoover dynamics. However, no ad
vantage of using such dynamics for calculating static pr
erties has been found. In all studied cases, the dynamics
different time scaling functions displayed worse converge
rate of calculated quantities than the NH dynamics.

Calculations of equilibrium time correlation function
showed that the time scaling isnot an independent proce
dure. Calculations of dynamic quantities require that the
erage of the ratio of time and momentum scaling functio
has to be equal to unity,̂w/h&51. In practical realizations
only the exactly obeyed constraint, i.e.,w[h should to be
used.

The most general form of the GNH equations has b
established, given in Eqs.~39!–~42!, which enables the cor
rect calculation of both static and dynamic quantities o
system at equilibrium. It has also been shown that the a
-
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e

at
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f
es
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-
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e
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n
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tional scaling of the momentum of the virtual variable~oc-
casionally exploited to derive different forms of extend
dynamics! is irrelevant and leads to the equations of moti
which can always be converted to the GNH equations. Th
the entire generalization of the NH dynamics is, in fact,
duced toonly two momentum scaling functionsh andu, and
to a form of thes-variable ‘‘potential energy’’ functionv.

The remaining three functionsh,u, andv involved in the
GNH dynamics still offer considerable freedom in selecti
the most appropriate and efficient canonical dynamics fo
given physical system. These functions are, however,
independent, and only sets of functions obeying
ensemble-ensemble condition~47! need to be considered
The number of such distinct sets which are computation
useful is expected to be very small. The set consisting
logarithmic and power functions was studied in detail a
most promising generalization of the NH dynamics for M
simulations. With this choice of function the GNH schem
becomes very similar to the NH approach but with coup
and more nonlinear thermostatting parts of the equatio
These ENH equations~48!–~51! are expected to produc
more chaotic phase-space dynamics than the NH equat
We have demonstrated that the ENH dynamics exhibits
nonical distribution for a one-dimensional harmonic oscil
tor. To our knowledge this is the only Hamiltonian bas
dynamics which possesses such a property.

Direct application of the GNH thermostat to study no
equilibrium problems can be problematic, and in general w
lead to incorrect results. In this context the entire general
tion reduces to the original NH approach, which can be c
sidered as a fairly unique scheme. However, it has been
demonstrated that, as for the NHC thermostats, a sim
modification of the ENH equations is possible, which mak
the GNH approach also applicable away from equilibrium

ACKNOWLEDGMENTS

This work was supported by the Polish Committee
Scientific Research~KBN! Grant No. 8T11F01214. We
would like to thank Professor W.G. Hoover for reading t
manuscript, and for helpful comments. We thank Profes
D. M. Heyes for useful remarks and suggestions. Part of
calculations were performed at the Poznan´ Computer and
Networking Center.
ys.
@1# W.G. Hoover and W.T. Ashurst, inTheoretical Chemistry:
Advances and Perspectives, edited by H. Eyring and D. Hend
erson~Academic Press, New York, 1975!.

@2# H.C. Andersen, J. Chem. Phys.72, 2384~1980!.
@3# W.G. Hoover, A.J.C. Ladd, and B. Moran, Phys. Rev. Lett.48,

1818 ~1982!.
@4# D.J. Evans, J. Chem. Phys.78, 3297~1983!.
@5# S. Nose´, Prog. Theor. Phys. Suppl.103, 1 ~1991!.
@6# M.P. Allen and D.J. Tildesley,Computer Simulation of Liquids

~Clarendon Press, Oxford, 1987!.
@7# D.J. Evans and G.P. Morris,Statistical Mechanics of Nonequ

librium Liquids ~Academic Press, London, 1990!.
@8# Wm. G. Hoover,Time Reversibility, Computer Simulation, an
Chaos~World Scientific, Singapore, 1999!.
@9# S. Nose´, Mol. Phys.52, 255 ~1984!.

@10# S. Nose´, J. Chem. Phys.81, 511 ~1984!.
@11# W.G. Hoover, Phys. Rev. A31, 1695~1985!.
@12# J. Jellinek and R.S. Berry, Phys. Rev. A38, 3069~1988!.
@13# A. Bulgac and D. Kusnezov, Phys. Rev. A42, 5045~1990!.
@14# I.P. Hamilton, Phys. Rev. A42, 7467~1990!.
@15# R.G. Winkler, Phys. Rev. A45, 2250~1992!.
@16# G.J. Martyna, M.L. Klein, and E. Tuckerman, J. Chem. Ph

97, 2635~1992!.
@17# W.G. Hoover and B.L. Holian, Phys. Lett. A211, 253 ~1996!.
@18# J. Jellinek and R.S. Berry, Phys. Rev. A40, 2816~1989!.
@19# J. Jellinek, J. Phys. Chem.92, 3163~1988!.
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